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vertebrates (Caruso et al. 2014, Olalla-Téarraga et al. 2006) and in some invertebrates
(Arnett and Gotelli 1999, Atkinson 1994, Cushman et al. 1993, Ray 2005). Most bird
species adhere to Bergmann’s rule (Ashton 2002, Blackburn and Gaston 1996), but
how widespread the pattern is and its underlying cause remain unresolved (Black-
burnetal. 1999, Meiri 2011, Olson et al. 2009, Watt et al. 2010).

Based on Bergmann’s rule and the mechanistic heat-conservation hypothesis,
Daufresne et al. (2009) hypothesized that decreasing body sizes would be a third
universal ecological response to global warming, with the yrst 2 responses be-
ing geographic range shifts toward higher latitudes and elevations and changes in
phenology (seasonality). Over time scales of several millennia, clear patterns exist
between temperature and body sizes. Body sizes of mammals, for example, oscil-
late, becoming smaller during warmer interglacials and increasing during colder
periods (Davis 1981). This pattern, however, is not entirely clear over shorter time
scales, and studies on the effect of recent climate change on body sizes of birds have
produced conpicting results. In a study of migrating birds in western Pennsylvania,
Van Buskirk et al. (2010) found that changes in wing length and fat-free mass (mass
when fat score is zero) differed across species and have steadily decreased since
1961 and concluded that these changes were consistent with a response to warmer
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Methods

Between 1980 and 2012 (excluding 2004-2006), we captured birds in 12-m,
30-mm-gauge mist nets in the fall (August through November). We generally de-
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species (62 = 119664.2, df = 1, P < 0.001) and ranged from -2.03% to +2.00%.
Wing length increased signiycantly in 9 species (Geothlypis trichas [Common
Yellowthroat], Mniotilta varia [Black-and-white Warbler], Seiurus aurocapilla
[Ovenbird], Setophaga caerulescens [Black-throated Blue Warbler], Catharus
fuscescens [Veery], Catharus minimus [Gray-cheeked Thrush], Catharus ustu-
latus [Swanson’s Thrush], and Vireo olivaceus [Red-eyed Vireo]) and decreased
signiycantly in 3 (Setophaga discolor [Prairie Warbler], Empidonax faviventris
[Yellow-bellied Flycatcher], and Empidonax minimus [Least Flycatcher]) (Table 2).
Change in wing length did not differ between Hatch Year (HY) and After Hatch
Year (AHY) age classes (¢*> = 2.0, df = 1, P = 0.26).

For all species combined, fat-free mass increased 1.30% N 0.20% between 1980
and 2012 (F; 34 = 42.37, P < 0.001, Table 1). Species varied signiycantly in
change in fat-free mass over time (6> = 116447.94, df = 1, P < 0.001), ranging from
-2.87% to +3.69% between 1980 and 2012. Fat-free mass increased signiycantly
in 6 species (Common Yellowthroat, Black-and-white Warbler, Ovenbird, Prai-
rie Warbler, Veery, and Red-eyed Vireo) and decreased in only Setophaga virens
(Black-throated Green Warbler) (Table 2). Across species, change in wing length
and change in fat-free body mass were positively correlated (r = 0.49,n =31, P =
0.005; Fig. 1).

Spatial variation in body-size changes
For all species combined, change in wing length over time at our site in Mary-
land was weakly correlated with change in wing length from 1961 to 2006 at a

Table 1. Summaries of generalized linear mixed models (GLMMs) to examine morphological changes
(log-transformed wing length and log-transformed fat-free mass) for 31 neotropical migratory species
from 1980-2012. Estimates are coefycients. Negative coefycients indicate declining size and positive
coefycients indicate increasing size. SE is standard error.

Source of variation Estimate SE F value [
Wing length
Year 0.000171 0.000025 46.06 <0.001
Julian day 0.000136 0.000011 165.93 <0.001
Age AHY 0.022810 0.000371 3777.15 <0.001
HY 0.000000
Sex Female -0.021540 0.000519 7984.38 <0.001
Male 0.034030 0.000518
Unknown 0.000000
Fat-free mass
Year 0.000405 0.000062 42.37 <0.001
Time 0.000061 3.50 E-6 300.95 <0.001
Julian day 0.000340 0.000026 177.63 <0.001
Age AHY 0.018890 0.000852 491.52 <0.001
HY 0.000000
Sex Female -0.017030 0.001193 1050.47 <0.001
Male 0.029150 0.001189
Unknown 0.000000
Fat 4537.02 <0.001
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station in western Pennsylvania, 235 km away (r = 0.37, n = 30, P = 0.043; Fig. 2).

Change in fat-free mass was not correlated between banding stations (r = 0.27, n =
30, P = 0.16; Fig. 3).

Discussion

We documented changes in wing length and fat-free mass across 31 neotropical
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speciyc changes sometimes swamped the general trend. For example, despite a
general increase in wing length and fat-free mass across species, 3 species showed
signiycant decreases in wing length, and 1 exhibited a signiycant decline in fat-free
mass. Wing length and fat-free mass increased signiycantly in 9 and 6 species, re-
spectively. Species in the same family sometimes showed similar changes in body
size (Table 2). Two of the 3 species with signiycant decreases in wing length were
pycatchers (Tyrannidae), and the other 3 species of pycatcher showed decreasing
but nonsigniycant changes in wing length. In thrushes (Turdidae), wing lengths in-
creased signiycantly in 3 of 4 species, and the fourth species showed a positive but
nonsigniycant trend. When examined individually, many migratory species did not
exhibit signiycant changes in body size: 19 species showed no signiycant change

AMRE
BAWW .

NAVVA O

_AAAVAIA

AN

T SATATEA
[ ERN]

ACFL o

,,,,,,,, O 1INAVVA

Figure 2. Across species, annual change (x10000) in In(wing length) in our study from 1980
to 2012 and a study in western Pennsylvania from 1961 to 2006 are weakly correlated (r =
0.37, n =30, P =0.043). We excluded Northern Parula because this species was not caught
in the fall in Pennsylvania. Species codes are deyned in Table 2.
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in wing length, and 24 species showed no signiycant change in fat-free mass. Most
of the individuals captured in our study likely belonged to northerly populations
and were caught during migration. Consequently, our samples likely consist of
individuals from different breeding populations. It is possible that changes in body
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between 1961 and 2006 and noted that these changes were consistent with a re-
sponse to a warming climate. In contrast, Goodman et al. (2012) documented
increases in wing length and in fat-free mass between 1983 and 2009 in California,
and Collins et al. (2017) found increases in wing length but not in fat-free mass for
20 resident and short-distant migrant passerine species at PWRC. Goodman et al.
(2012) hypothesized that increases in body size repected increases in climatic vari-
ability or primary productivity. Bumpus (1899) proposed that more severe weather
at higher latitudes might drive Bergmann’s rule by selecting for larger individuals
with increased fasting endurance. This starvation resistance hypothesis has been
supported by studies that have demonstrated that severe weather events can favor
larger body sizes (Ashton 2002, Brown and Brown 1999, Jaramillo and Rising
1995). Climate change is predicted to increase the frequency and severity of some
extreme weather events, such as heat waves and the number of heavy precipitation
events, (Easterling et al. 2000, Meehl and Tebaldi 2004, Min et al. 2011, Stouffer
and Wetherald 2007) while decreasing other events, such as cold-temperature ex-
tremes. Consequently, this hypothesis predicts that climate change may result in
either larger or smaller body sizes.

Our study, Van Buskirk et al. (2010), Goodman et al. (2012), and Collins et al.
(2017) all found that changes in body size differed between species, and magni-
tudes of species change were similarly small in all 3 studies: -0.09% to +0.11% per
year in our study, -0.08 to +0.02% per year in Van Buskirk et al. (2010), -0.03 to
+0.08% per year in Goodman et al. (2012), and -0.13 to +0.16% per year in Collins
et al. (2017). Across species, change in wing length was correlated with change in
fat-free mass at our site (Fig. 1). One species, Prairie Warbler, showed a signiycant
decrease in wing length but a signiycant increase in fat-free mass. Our yndings
agree with those of Salewski et al. (2014) and demonstrate that observed body size
changes depend on the species and morphological trait examined.

That we documented general increases in body size while Van Buskirk et al.
(2010) found widespread declines is particularly surprising given the proximity of
study sites and the similarity of the 2 studies. Only 235 km separate our banding
station in Maryland from theirs in western Pennsylvania. Both studies used wing
length and fat-free mass as measures of body size and examined a similar set of
species over comparable times and durations (32 years vs. 46). In both studies,
large sample sizes allowed inclusion of covariates such as age, sex, and date of
capture into statistical models. Of the 31 species examined in our study, Van Bus-
kirk et al. (2010) analyzed fall banding records for all species except Setophaga
americana (Northern Parula). Both studies found significant change over time
for all species combined, but when comparing the changes in individual species,
the change in wing length in our study was only weakly correlated with change
in wing length in western Pennsylvania (Fig. 2). In addition, 6 species (Common
Yellowthroat, Catharus minimus [Gray-cheeked Thrush], Oreothlypis rufica-
pilla [Nashville Warbler], Ovenbird, Red-eyed Vireo, and Catharus ustulatus
[Swainson’s Thrush]) that showed significant decreases in wing length in western
Pennsylvania increased significantly in our study. Similarly, changes in fat-free
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might select for shorter wing lengths. Moreover, a change in one morphological
trait can inpuence other morphological traits. Decreased mass, for example, might
select for reduced wing length due to allometric responses and selective pressures
associated with aerodynamics (Yom-Tov et al. 2006). Changes in body size repect
the combined selective forces of these factors, so over shorter periods with only
moderate increases in temperature, other forces might drive changes in body size.
If so, then climate would drive changes in body size only when climate change is
more extreme or prolonged.

Our work adds to a growing literature on the effect of recent climate change on
avian body sizes (Goodman et al. 2012; McCoy 2012; Salewski et al. 2010, 2014;
Van Buskirk et al. 2010) and demonstrates that morphological changes in neotropical
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